
OpenGL and Splines

OpenGL (and our friend JOGL) supports NURBS and
Bezier curves and surfaces. Though NURBS are
more interesting and more useful, they are also
more complex to use and we don't have a lot of
time, so we will just work with Bezier splines.
These are relatively straightforward to use. You
need control points -- 4 for a line segment, 16 for a
patch. If you want a curve made out of N
connected line segments you need 3N+1 points.

Before we get to OpenGL code, there is an issue
with buffers. You probably want to specify arrays of
control points, with each point being an array of
three floats. Ultimately, the graphics card wants a
byte stream. There is a Java method

FloatBuffer.wrap(float [] coords, int index, int size)

that takes a flat array of floats and produces the
appropriate stream. index is the starting point in
the coords array and size is the number of floats
you need (4 for a curve segment, 48 for a patch).

Before you start drawing anything you must
a) Put your control points in an array of

points.
b) Copy the points into the flat array of

coordinates.

For curves this is easy. For N segments you have
3N+1 control points, which you probably define in
one array. Your coordinates array will have 9N+3
floats; it should be an easy matter to copy the 3
coordinates of the ith control point into the 3i,
3i+1 and 3i+2 entries of the coordinates array.

For patches you need the 16 control points for one
patch to be consecutive in the coordinates array.
The TestPatch.java demo has just 2 patches, with
the control points in a 7x4 grid (7 rows, 4
columns), so it is easy to write these one row at a
time into a float buffer.

buffer = new float[7*4*3];
for (int i = 0; i < 7; i++)
 for (int j = 0; j < 4; j++)
 for (int k = 0; k < 3; k++)
 buffer[i*4*3+j*3+k] = data[i][j][k];

For anything more complex than this it is probably
better to build the coordinates buffer on the fly as
you are drawing the spline.

To actually display a spline you need 3 steps:
• Build an evaluator (essentially a spline

function). You do this with glMap1 for curves
and glMap2 for patches.

• Build a mesh of t-values (for curves) or (s, t)
pairs (for patches). You do this with
glMapGrid1 for curves and glMapGrid2 for
patches.

• Evaluate the spline on the mesh to get actual
geometry that can be displayed. You do this
with glEvalMesh1 for curves and glEvalMesh2
for patche.

For curves there are 6 arguments to glMap1:
• A constant describing the control points; for us

that is always GL2.GL_MAP1_VERTEX_3
• float min; the minimum value of t. For us this

is always 0.
• float max; the maximum value of t. For us this

is always 1.
• How many floats come between one control

point and the next; for us this is 3.
• The order (degree+1) of the spline; for us this

is 4.
• The FloatBuffer.

A typical call to glMap1 is

 gl.glMap1f(GL2.GL_MAP1_VERTEX_3, 0, 1, 3, 4, FloatBuffer.wrap(buffer, 0, 12));

The 10 args to glMap2 are similar
• Constant GL2.GL_MAP2_VERTEX_3
• minimum and maximum values of t: 0 and 1
• How many floats come between one control

point and the next in its row; usually 3.
• The order (degree+1) of the t parameter: 4
• minimum and maximum values of s: 0 and 1
• How many floats between one control point

and the one the row below it: this is often 12
(4 control points).

• The order of the s parameter: 4
• The float buffer

Here is a typical call to glMap2:

gl.glMap2f(GL2.GL_MAP2_VERTEX_3, 0,1, 3, 4, 0, 1, 12, 4, FloatBuffer.wrap(buffer, 0, 48));

The other functions are easier.

To create a mesh for a curve:
 gl.glMapGrid1(numDivisions, startT, endT);
as in
 gl.glMapGrid1(10, 0, 1);

To evaluate and draw a spline curve:
 gl.glEvalMesh1(<style>, firstIndex, lastIndex);
as in
 gl.glEvalMesh1(GL2.GL_LINE, 0, 10);

For a patch:
 gl.glMapGrid2f(numTvalues, startT, endT,
 numSvalues, startS, endS);
 gl.glEvalMesh2(<style>, firstTindex, lastTindex,
 firstSindex, lastSindex);

as in
 gl.glMapGrid2f(10, 0, 1, 10, 0, 1);
 gl.glEvalMesh2(GL2.GL_FILL 0, 10, 0, 10);

Altogether, here is all that it takes to draw one
segment of a spline curve, after the control point
coordinates have been put into the buffer array:

 gl.glMap1f(GL2.GL_MAP1_VERTEX_3, 0, 1, 3, 4,
 FloatBuffer.wrap(buffer, 0, 12));
 gl.glMapGrid1f(10, 0, 1);
 gl.glEvalMesh1(GL2.GL_LINE, 0, 10);

Here is the corresponding code for a patch:

gl.glMap2f(GL2.GL_MAP2_VERTEX_3, 0f,1f, 3, 4, 0f, 1f, 12, 4,
 FloatBuffer.wrap(buffer, 0, 48));
gl.glMapGrid2f(10, 0f, 1f, 10, 0f, 1f);
gl.glEvalMesh2(GL2.GL_FILL, 0, 10, 0, 10);

